Home Page/ Programs/Program Detail

Time Series Mini Bootcamp

Time Series Mini Bootcamp

  • About

    Time series forecasting is an important part of machine learning that requires an additional effort to recognize the impact of the time-component of the problems, such as trends and seasonality. In this series of lectures, you will be introduced to basics of time series models in Python environment. Specifically, you will have gain hands-on experience on handling forecast models in four sessions.


    Who this course is for:

    • Anyone who wants to be master in time series data with python
    • Anyone who wants to become proficient in time series data analysis working with real life data
    • People interested in applying machine learning techniques to time series data

    Course Requirements:

    • Prior familiarity with the interface of Jupiter Notebooks
    • Prior exposure to basic statistical techniques
    • Be able to carry out data reading and pre-processing tasks such as data cleaning In python
  • Curriculum

    ● Week 1. Fundamentals
    ● Python Environment
    ● What is Time Series Forecasting?
    ● Time Series as Supervised Learning
    ● Load and Explore Time Series Data
    ● Data Visualization
    ● Resampling and Interpolation
    ● Power Transforms
    ● Moving Average Smoothing

    ● Week 2. Temporal Structure
    ● Introduction to White Noise
    ● Introduction to the Random Walk
    ● Decompose Time Series Data
    ● Use and Remove Trends
    ● Use and Remove Seasonality
    ● Stationarity in Time Series Data

    ● Week 3. Evaluate Models
    ● Backtest Forecast Models
    ● Forecasting Performance Measures
    ● Persistence Model for Forecasting
    ● Visualize Residual Forecast Errors
    ● Reframe Time Series Forecasting Problems

    ● Week 4. Forecast Models
    ● Introduction to the Box-Jenkins Method
    ● Autoregression Models for Forecasting
    ● Moving Average Models for Forecasting
    ● ARIMA Model for Forecasting
    ● Autocorrelation and Partial Autocorrelation
    ● Grid Search ARIMA Model Hyperparameters
    ● Save Models and Make Predictions
    ● Forecast Confidence Intervals

  • Schedule
    • Start learning the Time Series with outside of business hours schedule!
    • The 12 hours of schedule is as follows:
    • February 15 – 22 – 29 and March 7
    • Saturdays, from 2:00 pm to 5:00 pm
  • Location

    The venue for the bootcamp is Magnimind Academy Sunnyvale Campus: 830 Stewart Dr #182, Sunnyvale, CA 94085. The capacity is limited to 20 people.

  • Online

    Time Series Mini Bootcamp is now also available online. Anyone who wants to attend this mini bootcamp can join online live webinars where the same course content will be taught. Online sessions will be distributed through zoom conferences. Students will have access to the screen of the instructor, external camera showing class atmosphere, whiteboard, and be able to ask questions through chat. You may attend this mini bootcamp no matter where you are.

  • Tuition
    Tuition fee

    Time Series Mini Bootcamp has a $300 tuition fee.

    For the “Early Bird” applicants (January 15 – February 8), the tuition fee is $250.

    Payment process

    After you finish filling your application form, the website will direct you to the payment page. There, you can select available payment options.

    Cancellation

    If you’re not satisfied with the course you may cancel your application.

  • Application

    The application process starts at magnimindacademy.com. You can view the course pages and learn more about your intended course. You can apply by clicking the “Buy now” button and then fill out the application form.

  • Instructor

    Yasin Ceran is passionate about all things data and holds a vast experience in data analysis, mathematical modeling and Apache Spark, and in SQL, Python and R. Since 2013, he has been working at Santa Clara University as an assistant professor in the Information Systems and Analytics department (earlier Operations Management and Information Systems department), teaching applied machine learning, software platforms, and computer networks. He holds extensive experience in working on various data intense business platforms. Some of the notable projects he contributed to include the development of a predictive inventory allocation algorithm for Blockbuster with regard to the relationship between sales and customer reviews. Later, he created a mathematical model to capture the decision-making process of online customers based on their collection of data from different sources on the Web. He also developed a probabilistic model to detect churning users for Stumbleupon.com. Yasin is the proposer of an algorithm that helps to reduce bias in electronic formats. His present role involves working on optical DNA sequencing based on actionable big data.

    Yasin has completed his Ph.D. in Management Information Systems from the University of Texas at Dallas. He earned his M.S. in Electrical Engineering with a concentration in Telecommunications from the same university and obtained his B.S. in Electrical Engineering from Osmangazi Üniversitesi. At Santa Clara University, he also supervised a large team of software development students working on the Capstone Project. During his 5+ years of working experience, Yasin has worked rigorously on an array of data related projects encompassing data mining, statistics, big data, data science, and data visualization, and is dedicated to sharing his experience and expertise with learners. Apart from data science, Yasin’s knowledge spectrum also expands to cybersecurity and he is an ardent follower of innovative processes and implementations of technologies to defend the world’s digital economies.

  • How do i get the best resolution?

    90'As schlitz paleo snackwave everyday carry. Small batch sustainable art party vegan flannel jianbing adaptogen umami yuccie. Kickstarter before they sold out godard banh mi pop-up roof party vexillologist semiotics actually fingerstache taiyaki pug art party 3 wolf moon bespoke.

    Vexillologist listicle glossier ugh post-ironic. Ethical scenester irony organic disrupt. Lumbersexual four loko wolf art party helvetica cold-pressed polaroid biodiesel tacos quinoa tilde keffiyeh woke. Edison bulb meggings shaman bushwick iPhone lo-fi. A schlitz paleo snackwave everyday carry. Small batch sustainable art party vegan flannel jianbing adaptogen umami yuccie. Kickstarter before they sold out godard banh mi pop-up roof party vexillologist semiotics actually fingerstache taiyaki pug art party 3 wolf moon bespoke. Tofu vexillologist raclette bushwick copper mug keytar. Bespoke vape 3 wolf moon narwhal +1 authentic coloring book chartreuse.

Comments / 2

  • Kenyon Martin

    Nov 02, 2019

    Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantiume asodkt doloremque laudantium, totam rem aperiam.

  • Kenyon Martin

    Nov 02, 2019

    Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantiume asodkt doloremque laudantium, totam rem aperiam.

  • What a product key?

    Lorem ipsum dolor amet succulents put a bird on it pabst fanny pack, kinfolk literally authentic microdosing cardigan cronut letterpress coloring book direct trade leggings.

  • Where do i find my product key?

    Lorem ipsum dolor amet succulents put a bird on it pabst fanny pack, kinfolk literally authentic microdosing cardigan cronut letterpress coloring book direct trade leggings.

  • How long does it take to download?

    Lorem ipsum dolor amet succulents put a bird on it pabst fanny pack, kinfolk literally authentic microdosing cardigan cronut letterpress coloring book direct trade leggings.

  • What steps to follow after download?

    Lorem ipsum dolor amet succulents put a bird on it pabst fanny pack, kinfolk literally authentic microdosing cardigan cronut letterpress coloring book direct trade leggings.

  • How do i get the best resolution?

    Lorem ipsum dolor amet succulents put a bird on it pabst fanny pack, kinfolk literally authentic microdosing cardigan cronut letterpress coloring book direct trade leggings.